
Simple Jabber - Divide And Conquer XMPP

Jan Klemkow

30.08.2015

Abstract

The Extensible Messaging and Presence Protocol (XMPP)1 is like the web. It is
far too complex to be implemented in one program with Unix philosophy in mind.
But like the web, you have to deal with it. As of this writing, it is the only open
and widely used instant messaging protocol on the internet. Its extensibility is
the main reason that an implementation in a single program is nearly impossi-
ble. Most implementations of XMPP deal with this by omitting extensibility
and features or by embedding extensibility via plug-ins. Implementations like
pidgin2 try to implement as much as possible of the XMPP feature set. This
leads to a large and inflexible program. Third party programs that want to
interact with pidgin have to depend on the pidgin plug-in API or the D-Bus3

communication channel. Other much more minimalistic implementations like jj4
trade extensibility of the XMPP protocol for simplicity. This paper describes an
approach to master this problem. It provides a minimal implementation of the
core protocol of XMPP and keeps the possibility to extend it with third party
tools without plug-in APIs or a special communication channel.

1 Protocol

The XMPP protocol mainly consists of three XML tags, called stanzas (message,
presence and iq). The message and presence stanza are used for tasks that
their names suggest. iq does everything else. The iq stanza mainly handles the
extensibility part of the protocol. Beside these stanzas there a some other XML
tags which handles things like connection, authentication and error messages.

At this level the protocol appears to be simple. But this is just the basic structure.
The complexity starts within the sub XML tags of these three stanzas.

1http://xmpp.org/
2http://pidgin.im/
3http://freedesktop.org/wiki/Software/dbus/
4http://23.fi/jj/

1



2 Design

The design goal of sj5 is to delegate as much knowledge of the inner XML
structure as possible to other programs. The sj implementation consists of
four daemons. One daemon for every stanza and one to handle connections,
authentication and stanza routing. The following subsections describe the
functionality of these core daemons.

2.1 sj

The program sj handles a network connection, its authentication and provides
stanza routing. It spawns the other three daemons after the connection to an
XMPP server is established. It communicates over pipes with the other daemons.
If sj receives a stanza from the XMPP server, it forwards the whole tag over an
unidirectional pipe to the responsible daemon. For outbound communication, sj
opens a named pipe named in. If a daemon or any other program wants to send
a stanza to the XMPP server, it just opens the in file and writes its XML tag
into it.

2.2 messaged

The messaged daemon handles all message tags and the interface for the chat
front end. It extracts the sender and the message text from all incoming message
stanzas. It delivers the message text to the out file of the corresponding sender
similar to IRC6 client Irc It(ii)7. It also opens named pipes for every known chat
contact. These files are also named in files similar to the in file of sj. To send a
message to a chat contact, a front end program simply opens the corresponding
in file, writes the chat message into it and closes it. messaged encapsulates this
plain text message within a well formed message stanza and writes it into the in
file of sj.

2.3 presenced

The presenced handles the presence stanzas in the same way like messaged does
for message stanzas. There are two more files inside of a contacts directory beside
of in and out which are named presence and mypresence. presence contains the
presence status of the corresponding contact. mypresence contains ones own
presence status that should be seen by the contact. If there is no mypresence
file inside of a contacts directory the presence status of a global mypresence file
is used.

5http://klemkow.net/sj.html
6http://tools.ietf.org/html/rfc1459
7http://tools.suckless.org/ii/

2



2.4 iqd

The iqd handles the extensions. iqd itself knows nothing about any extension.
Like sj, it just routes the iq stanzas to the programs which know how to handle
them.

If an extension program wants to send an iq request tag to the XMPP server it
just writes the whole iq stanza into the in file of sj. Every iq stanza has an id
attribute by which it is identified. When the iq response arrives at iqd, it opens
a file with the name of this id and writes the whole answering iq stanza into it.
The extension program just opens this file and reads the answer.

With this mechanism, extension programs just have to deal with file handling
and they have to known how to handle their XML tags. This allows to write
portable extension programs without any other requirement.

3 Interfaces

This section describes the front end and back end interfaces of the sj tools suite.

3.1 Front end

All user interfaces used to chat over ii8 or Ratox9 should also work with sj.
Like ii messaged provides an in and out file to communicate with the front
end programs. In order to utilize the possibilities of the XMPP protocol this
interface has to be extended. To handle presence information of the user and
its contacts, the two files presence and mypresence have been defined during
the work on sj. The extensions of XMPP provide further possibilities like the
presence status. For example, there are mechanisms to handle avatar pictures or
information about the mood of a user.

To keep front end programs generic and usable, this filesystem based interface
should be standardized. This way programs for other chat protocols are able to
use the same features with the same user interface programs.

3.2 Back end

Like other network programs, an XMPP client has to deal with IPv4 and IPv6
sockets, domain names and ports as well as traffic encryption. If a program
additionally needs to handle TLS10 certificate validation or needs to make use
of proxy servers, than just this part becomes a monster.

8http://tools.suckless.org/ii/
9http://ratox.2f30.org/

10Transport Layer Security

3



Using the Unix Client Server Programming Interface (UCSPI)11, the sj program
is able to outsource this infrastructure to other programs. The domain name
is already resolved, the network connection established and the TLS certificate
validated by the UCSPI tool suite12, just before the sj program is started. sj
simply uses the two pre-opened file descriptors six and seven to communicate
with the XMPP server.

4 Future work

This chapter describes tasks which have to be done in order to move this approach
into a usable program suite.

4.1 Incoming iq queries

To handle incoming iq queries, the iqd has to read the name space of the tag
inside of iq requests. With this information iqd is able to launch a program that
is able to handle this kind of request.

4.2 new chat contacts

Thus far, the messaged program is unable to detect new chat contacts. A
portable mechanism to signalize or detect new directories should be implemented.
This problem should be solved for user interfaces, too.

4.3 Integration of OTR

“Off the record” (OTR)13 is a widely used mechanism to provide private com-
munication over XMPP and other chat protocols. A generic solution should be
implemented to utilize this encryption protocol for other ii-like chat programs,
too.

4.4 User front end integration

sj, ii and ratox are just back end tools. To make them usable for end users, many
front end programs for GUI and terminal have to be implemented. Three proof
of concepts for terminal14, X1115 and web16 environments were implemented for

11http://cr.yp.to/proto/ucspi.txt
12https://github.com/younix/ucspi
13https://otr.cypherpunks.ca/
14https://github.com/younix/cii
15https://github.com/younix/xii
16https://github.com/younix/wii

4



the ii-like file system based chat front ends. Every named program represents
just one chat session. The missing part is some glue which connects these user
front ends.

5 Appendix

Figure 1: sj communication structure

5


	Abstract
	Protocol
	Design
	sj
	messaged
	presenced
	iqd

	Interfaces
	Front end
	Back end

	Future work
	Incoming iq queries
	new chat contacts
	Integration of OTR
	User front end integration

	Appendix

